Another common way to look at water disinfection effectiveness is to employ the concentration time (CT) concept. This concept is common in the design drinking water disinfection systems. The CT concept of ozone is expressed as a product of the average concentration of ozone (residual) multiplied by the time over which an organism is exposed to the residual. This product is referred to as CT and typically has the units mg-min/liter. This approach is conceptually the same as the lethality coefficient, but calculated in a somewhat different manner.
For a given organism and temperature, the CT will correlate to a certain log reduction of that organism. A four log reduction indicates a 99.99% removal of the organism. Each organism will have a different response for a given biocide. Below are some CT values for 3 log reduction (99.9%) of giardia lamblia.
Comparing ozone to chlorine for this organism, for the same exposure time using the CT approach shows that ozone is 60 times more effective than chlorine.
Biocide | CT |
---|---|
Chlorine | 122 |
Chloramines | 2200 |
Chlorine dioxide | 26 |
Ozone | 2 |
Ozone is effective against a range of important organisms besides giardia as shown below:
Organism | CT | Log Reduction |
---|---|---|
Virus | 1.3 | 4 |
E. Coli | 0.02 – 0.03 | 2 |
Streptococcus F. | 0.01 – 0.03 | 2 |
Legionella | 0.3 – 1.1 | 2 |
Total Coliform | 0.19 | 6 |
CT is the product of the residual concentration of the disinfectant multiplied by the contact time C X T. It is measured in mg per minute per liter (mg-min/l). For a given disinfectant such as ozone or chlorine, the CT value can be equated to a log removal of a particular organism. The USEPA published table for log removal of particular organisms for various disinfectants as a function CT, pH and Temperature. Log removal refers to Log(10) removal, so 2 log removal is 99% removal, 3 log is 99.9% removal, 4 log removal is 99.99% removal, and so on.
There is normally a regulatory requirement for a CT, CT (Req). For example, Ground Water Rule requires a four long reduction of viruses. The calculated value CT (Cal) for a drinking water system must meet or exceed CT (Req). CT (Cal) is usually based on the value for water reaching the first customer. This is more relevant for chlorine than ozone since chlorine has a persistent residual that lasts for many hours. The ozone residual has a half-life measured in minutes.
The calculation for CT begins with measuring the residual of the disinfectant. For ozone, there is normally an instantaneous demand and then a decay in ozone concentration as a function of time. As noted above, this decay occurs over a matter of minutes. In pure water at 20 degrees C the half-life of ozone is about 20 minutes. So, in one hour the concentration has been reduced by a factor or eight after the instantaneous demand has been satisfied. There are instruments that allow for the continuous monitoring of ozone concentration. Multiple monitoring points throughout the contact tank provide a profile of the residual concentration.
The apparent time, T, is the volume of the tank divided by the flow. In reality, most tanks allow for some of the water to short circuit the tank and have a shorter contact time than predicted by the simple division of volume by flow rate. To arrive at the proper number, one can use tracer studies. This is where tracer chemicals are added to the water and are measured as they exit the tank. the amount of time for 10% of the amount to exit is the allowed contact time T(10).
Alternatively, regulatory authorities such as the USEPA provide baffling factors that can be used to estimate the actual contact time. For a tank with multiple baffles, this baffling factor will be 0.5 to 0.6. So, if the simple T=Volume/Flow Rate equation where to indicate a contact time of 20 minutes, application of a baffling factor of 0.5 would suggest a true contact time of 10 minutes.
The average concentration multiplied by the corrected contact time would provide the actual CT value. If the concentration can be measured through the contact tank and plotted with time, the area under the curve is also a measure of the true CT value.