Ozone Drinking Water Treatment Applications and Operational Improvements

> Ohio Section <u>AWWA</u> 18 September 2008

Anthony Sacco Spartan Environmental Technologies, LLC & Paul Overbeck International Ozone Association

Ozone Use at WTPs in United States

OZONE

- **Providing Multiple Benefits**
 - Oxidation
 - TOC
 - Fe/Mn
 - Hydrogen Sulfide
 - Taste & Odor
 - Color
 - CL2-DBPs
 - EDC
 - Disinfection
 - Bacteria
 - Virus
 - Parasites
 - Flocculation
 - Less Chemical Coagulant
 - Lower solids Handling
 - Lower Turbidity & Particles
 - Longer Run time
 - Less Backwashing

Ozone destroys bacteria, viruses, cysts and parasites

Ozone Biocidal Behavior

Before ozone treatment

After ozone treatment

1. Ozone oxidizes cell membrane, causing osmotic bursting

2. Ozone continues to oxidize enzymes and DNA

Air Liquide America Corp., Chicago Research Center, James T.C. Yuan, Ph.D., year 2000

Bacteria Inactivation by Ozone

CT = residual concentration (mg/L) x time (min)

E. coli $0.02 - 0.06 \text{ mg-min/L} = \mathbf{CT} \ (2-\log)\mathbf{AWWA}$

Streptococcus faecalis 0.01 - 0.025 mg-min/L = CT (2-log)AWWA

Legionella pneumophila 0.3 - 1.1 mg-min/L = CT (2-log)AWWA

Total Coliform $0.19 \text{ mg-min/L} = \mathbf{CT}$ (6-log) LAAFP

HPC

0.19 mg-min/L = \mathbf{CT} (3-log) LAAFP

Ct Values (mg x min./L) For 99.9 % Inactivation of Giardia and 99.99% Virus

				Data for 5•C	
	Free Chlorine	Chloramine	Chlorine Dioxide	Ozone	
	(pH 6 to 7)	(pH 8 to 9)	(pH 6 to 7)	(pH 6 to 7)	
Giardia	122	2200	26.0	1.9	
Virus	8	1988	33.4	1.2	

Taken from: "Optimizing Water Treatment Plant Performance Using Composite Correction Program." prepared by Process Applications, Inc., for the U.S. EPA, Office of Drinking Water, Cincinnati, Ohio.

US EPA CT Values for Virus Inactivation by Ozone

	Temperature °C							
<u>Inactivation</u>	<u><1</u>	<u>5</u>	<u>10</u>	<u>15</u>	<u>20</u>	<u>25</u>		
2-log	0.9	0.6	0.5	0.3	0.25	0.15		
3-log	1.4	0.9	0.8	0.5	0.4	0.25		
4-log	1.8	1.2	1.0	0.6	0.5	0.3		

Table 2-2.	CT Values	for <i>Crypte</i>	osporidium	Inactivation	by Ozon	e (40 CFR	(141.730) ¹
------------	------------------	-------------------	------------	--------------	---------	-----------	------------------------

Log Credit	Water Temperature °C ²									
	0.5	1	2	3	5	7	10	15	20	25
0.5	12	12	10	9.5	7.9	6.5	4.9	3.1	2.0	1.2
1.0	24	23	21	19	16	13	96	23	92	2.5
1.5	36	35	31	29	24	20	15	9.3	5.9	3.7
2.0	48	46	42	38	32	26	20	12	7.8	4.9
2.5	60	58	52	48	40	33	25	16	9.8	6.2
3.0	72	69	63	57	47	39	30	19	12	7.4

1. LT2ESWTR Toolbox Guidance Manual Chapter 11 (draft June 2003)

2. CT values between the indicated temperatures may be determined by interpolation.

Drinking Water Regulatory Backdrop

Longstanding Dilemma

crobial Ris

Level of Chemical Disinfection

Disinfection By-Products

Chlorine -Trihalomethanes (THM) -Haloacetic Acids (THAA₅) -Bromate Ozone -Bromate -Assimilable Organic Carbon (AOC)

How does ozone/biofiltration work?

By-Product Formation – THM/HAA

Courtesy of Gwinnett County, Georgia

Dramatic disinfection-by-product reductions

Summary Bromate Formation Control

Chemical Addition Options

- Chlorine
- Ammonia
- Alkalinity
- Organic Matter
- pH Adjustment
- Temperature Control
- Lower O3 Applied Dose & Reaction Time

Microflocculation

- Improved Floc/Clarification & Filtration
- TOC Reduction
- Dosage Influenced by pH, TOC
- Extends Filter Runs
- Reduces Solid Handling

Microflocculation

Figure 2-11. Pre-coagulation ozonation effect on turbidity during startup (Mazloum, 2004)

Organic Color Reduction

Ozone performs its work through oxidation reactions.

Taste & Odor

- Oxidation
 - Ozone Alone
 - Advanced Oxidation Processes
- Algal Sources
 - methyl isoborneal (MIB)
 - Geosmin
- Other Organic Matter

Use of Ozone for Taste and Odor Control has been Successful:

Star-Telegram⊭com

Tastes great, less chlorine

May 14, 1994

Dallas News, com

The Ballas Morning News

Wednesday, August 18, 2004

Safer Water

Substituting ozone for chlorine is good policy

Yucky water? Not in Dallas

Ozone treatment removes foul flavor of algae found elsewhere

09:20 PM CDT on Saturday, July 29, 2006

Star-Telegram*com

Ozone treatment makes water safer, taste better

July 25, 1995

Water Treatment Performance Emerging Contaminants

EDC Removal									
<u><50%</u>	50-59%	60-69%	70-79%	80-89%	90-99%				
Monylphenol		Atrazine	Meprobromate	Acenaphtylene	Trimethoprim	Diazepam			
BHC		Naphtalene	lopromide	Phenolythrene	Acetaminophen	Oxybenzone			
Musk Ketone		Heptachlor	Aldrine	Anthracene	Caffeine	Progesterone			
Dieldrin		DDE		Galaxolide	Erythromyein-H ₂ O	Ethynylestradin			
Endrin				Metolachlorine	Sulfamethozazone	Testroterone			
				Benzo (a) pyrene	Fluoxetine	Andeostenedione			
				Chrysene	Pentoxifylline Naproxen				
				Methoxychlor	Pilantin Ibuprofen				
					Carbcamazepine Diclofenae				
					DEET	Triclosan			
					Fluorene	Gernfibrozil			
					Pyrene	Octylphenol			
					Fluoraythene				

Important Advancements in Ozone System Design and Operation

- Lowered capital and O&M cost by switching to oxygen feed-gas (LOX and VPSA) and improvements in ozone generator design
- Developed/implemented robust process monitoring and control
- Improved fine bubble diffusion & side stream dissolution

From Air to Oxygen: Pre-1987, 1987 to 1993 and Post 1993

Ozone Equipment is Simplified

Less equipment = Lower maintenance, capital cost, and operating cost

Ozone Residual Monitoring has Improved

- "Indigo Trisulfonate" Standard Method ozone residual test
- Trustworthy on-line residual analyzers and robust sampling systems

Display Range: 0-200.0 PPB, 0-2.000 PPM Accuracy: ± 0.02 PPM or 0.5% of F.S. Repeatability: ± 0.01 PPM or 0.3% of F.S. Linearity: 0.1% of F.S. Zero Drift: < 0.01 PPM per month

Las Vegas, AMS Water 7 days of hourly data **Treatment Plant**

2000

1500

1000

500

0

6/25

6/26

6/27

6/28

6/29

Dates for One Week

- Water flow varies from 150 to 550 MGD twice per day
- Dose target = 1.1• mg/L Range = 1.0 to 1.2
- Gas flow is constant •
- Ozone production range is 1500 to 5500 lb/day

400

300

200

100

0

7/2

Ozone Production Ib/day

7/1

Total Gas Flow sofm

6/30

Controlling Disinfection is the Performance GOAL (e.g., *Giardia***)**

Ozone Dissolution Options

Bubble Diffuser

Side Stream

Historically, the most common ozone contacting option

For many reasons, the side stream option is becoming more popular today

Fine Bubble Diffuser Material Improvements

Hypalon diffuser gaskets after 2-yr service in a high-ozoneconcentration (8%wt) oxygen-fed ozone application

Alternative expanded-Teflon gaskets that are gaining popularity for use in oxygen-fed ozone applications

One-piece design is formed of a gas permeable porous alumina diffuser ceramic bonded at high temperature yielding a corrosion resistant product. Stainless steel components, polymer gaskets and cements of any kind have been eliminated.

Option 1 - Designed to maximize ozone transfer within the side stream flow

Option 2 - Designed to utilize ozone contactor for ozone transfer assistance

International Ozone Association www.io3a.org

Joint IOA & IUVA Conference 04 – 06 May 2009 Boston, MA

Anthony Sacco Spartan Environmental Technologies, LLC & Paul Overbeck International Ozone Association

